8 resultados para Dehydration Tolerance

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cronobacter spp. are opportunistic pathogens which can be isolated from a wide variety of foods and environments. They are Gram negative, motile, non-spore forming, peritrichous rods of the Enterobacteriaceae family. This food-borne pathogen is associated with the ingestion of contaminated infant milk formula (IMF), causing necrotizing enterocolitis, sepsis and meningitis in neonatal infants. The work presented in this thesis involved the investigation and characterisation of a bank of Cronobacter strains for their ability to tolerate physiologically relevant stress conditions that are commonly encountered in the gastrointestinal tract. While all strains were able to endure the suboptimal conditions tested, noteworthy variations were observed between strains. A collection of these strains were Lux-tagged to determine if their growth could be tracked in IMF by measuring bioluminescence. The resulting strains could be easily and reproducibly monitored in real time by measuring light emission. Following this a transposon mutagenesis library was created in one of the Lux-tagged strains of Cronobacter sakazakii. This library was screened for mutants with affected growth in milk. The majority of mutants identified were associated with amino acid metabolism. The final section of this thesis identified genes involved in the tolerance of C. sakazakii to the milk derived antimicrobial peptide, Lactoferricin B (Lfcin B). This was achieved by creating a transposon mutagenesis library in C. sakazakii and screening for mutants with increased susceptibility to Lfcin B. Overall this thesis demonstrates the variation between Cronobacter strains. It also identifies genes required for growth of the bacteria in milk, as well as genes needed for antimicrobial peptide tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic components, milk protein isolate, soy protein isolate, or whey protein isolate were used as emulsifiers and, in some cases, applied in excess amount to form matrices together with sugars. Dehydrated amorphous structures with bioactives were produced by freezing and freeze-drying. Experimental results indicated that: (i) lactose and trehalose showed similar water sorption and glass transition but very different crystallization behavior as pure sugars; (ii) the glass transition of sugar-based systems was slightly affected by the presence of other components in anhydrous systems but followed closely that of sugar after water plasticization; (iii) sugar crystallization in mixture systems was composition-dependent; (iv) the stability of bioactives was better retained in the amorphous matrices, although small losses of stability were observed for hydrophilic components above glass transition and for hydrophobic components as a function of water activity; (v) sugar crystallization caused significant loss of hydrophilic bioactives as a result of the exclusion from the continuous crystalline phase; (vi) loss of hydrophobic bioactives upon sugar crystallization was a result of dramatic change of emulsion properties and the exclusion of oil particles from the protecting structure; (vii) the double layers at the hydrophilic-hydrophobic interfaces improved the stability of hydrophobic bioactives in dehydrated systems. The present study provides information on the physical and chemical stability of sugar-based dehydrated delivery systems, which could be helpful in designing foods and ingredients containing bioactive components with improved storage stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of agricultural biodegradable wastes and by-products can be carried out using composting or vermicomposting, or a combination of both treatment methods, to create a growing medium amendment suitable for horticultural use. When compared to traditional compost-maturation, vermicompost-maturation resulted in a more mature growing medium amendment i.e. lower C/N and pH, with increased nutrient content and improved plant growth response, increasing lettuce shoot fresh and dry weight by an average of 15% and 14%, respectively. Vermicomposted horse manure compost was used as a growing medium amendment for lettuce and was found to significantly increase lettuce shoot and root growth, and chlorophyll content. When used as a growing medium amendment for tomato fruit production, vermicomposted spent mushroom compost increased shoot growth and marketable yield, and reduced blossom end rot in two independent studies. Vermicompost addition to peat-based growing media increased marketable yield by an average of 21%. Vermicompost also improved tomato fruit quality parameters such as acidity and sweetness. Fruit sweetness, as measured using Brix value, was significantly increased in fruits grown with 10% or 20% vermicompost addition by 0.2 in truss one and 0.3 in truss two. Fruit acidity (% citric acid) was significantly increased in plants grown with vermicompost by an average of 0.65% in truss one and 0.68% in truss two. These changes in fruit chemical parameters resulted in a higher tomato fruit overall acceptability rating as determined by a consumer acceptance panel. When incorporated into soil, vermicomposted spent mushroom compost increased plant growth and reduced plant stress under conditions of cold stress, but not salinity or heat stress. The addition of 20% vermicompost to cold-stressed plants increased plant growth by an average of 30% and increased chlorophyll fluorescence by an average of 21%. Compared to peat-based growing medium, vermicompost had consistently higher nutrient content, pH, electrical conductivity and bulk density, and when added to a peat-based growing medium, vermicomposted spent mushroom compost altered the microbial community. Vermicompost amendment increased the microbial activity of the growing medium when incorporated initially, and this increased microbial activity was observed for up to four months after incorporation when plants were grown in it. Vermicomposting was shown to be a suitable treatment method for agricultural biodegradable wastes and by-products, with the resulting vermicompost having suitable physical, chemical and biological properties, and resulting in increased plant growth, marketable yield and yield quality, when used as an amendment in peat-based growing medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.